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Granular collapse in two dimensions
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An experimental investigation is conducted into the collapse of granular columns
inside rectangular channels. The final shape is documented for slumps inside relatively
wide channels, and for collapses inside much narrower slots. In both cases, the collapse
is initiated by withdrawing a swinging gate or sliding door, and the flow remains
fairly two-dimensional. Four different granular media are used; the properties of the
materials vary significantly, notably in their angles of friction for basal sliding and
internal deformation. If H is the initial height of the column, h∞ the maximum final
height of the column and a the initial aspect ratio, then the data suggest that H/h∞ ∼
a0.6 in wide channels and H/h∞ ∼ a0.5 for narrow slots. For the runout, we find that
(l∞ − L)/L ∼ a0.9±0.1 for wide channels, and (l∞ − L)/L ∼ a0.65±0.05 or l∞/L ∼ a0.55±0.05

for narrow slots, where l∞ is the maximum runout of the material and L the initial
length of the column along the channel (a := H/L). In all cases, the numerical constant
of proportionality in these scaling relations shows clear material dependence. In wide
slots, there is no obvious universal scaling behaviour of the final profile, but such
a behaviour is evident in narrow slots. The experimental results are compared with
theoretical results based on a shallow granular-flow model. The qualitative behaviour
of the slump in the wide slot is reproduced by the theoretical model. However, there
is qualitative disagreement between theory and the experiments in the narrow slot
because of the occurrence of secondary surface avalanching.

1. Introduction
The collapse and slump of a granular medium play a key role in a variety of

physical settings in engineering and geophysics. Indeed, it is hard to overstate the
significance in many costly industrial processes and environmental hazards. Yet,
despite the importance, our understanding of the simplest kinds of granular flow
remains incomplete. From the theoretical perspective, this is largely due to the
lack of an acceptable continuum model for a granular material under the relevant
physical conditions. However, until fairly recently it has also been the case that there
have been relatively few experiments conducted to observe the slump of a suddenly
released granular pile on a horizontal surface.

For these reasons, we explore one of the simplest kinds of flow configuration in
this kind of medium: the granular ‘dam-break’ problem. This configuration has deve-
loped into a classical problem in fluid mechanics owing to its intrinsic interest, repro-
ducibility in the laboratory and, at least in the two-dimensional case, accessibility on
the theoretical side (e.g. Whitham 1974). The purpose of the current paper and a com-
panion paper (Kerswell 2005) is to follow a parallel path for the granular dam breaks;
we perform some experiments and compare the results with a simple theoretical
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model. The current article focuses on the laboratory experiments and comparison;
Kerswell (2005) describes in more detail the solution of the theoretical model.

Previous experimental work on related problems includes the releases of cylindrical
piles by Lajeunesse, Mangeney-Castelnau & Vilotte (2004) and Lube et al. (2004).
Neither work attempts a detailed comparison with a theoretical model. Instead, they
opt for qualitative discussion of the observed dynamics and the construction of scaling
laws for how the final shape depends on the initial height of the cylindrical column.
Despite the complicated flow dynamics, both groups report simple scaling laws for
the final maximum height and radius of the deposit. The question of whether such
laws carry over in some straightfoward fashion to planar slumps in channels has also
motivated the current work. In fact, we report some similar findings. A comparison
of these existing experimental results with the axisymmetric version of the theory is
given by Kerswell (2005).

The theoretical model we use treats the granular medium as a two-dimensional
shallow fluid layer that slides over the plane beneath with relatively little internal
shear. Basal friction then plays a key role in the dynamics. The model has much in
common with that proposed by Savage & Hutter (1989 and elaborated on further by
Savage & Hutter 1991; Hutter & Koch 1991; Hutter et al. 1995; Pouliquen & Forterre
2002), who explored the acceleration of granular layers on inclined surfaces, and has
the same philosophical foundation as the St Venant model of fluid mechanics. The St
Venant model is derived adopting a crude closure for the stresses in a turbulent water
course, and has a mainly empirical justification. By contrast, the granular model used
here can be formally derived by asymptotic means from the governing equations if the
medium is assumed to be a fluid with a certain constitutive law for the internal stresses
and sliding law at its base (we give this derivation in Appendix A). Unfortunately, this
cannot be taken as a formal justification of the model because the original governing
equations are in question in this instance. Nevertheless, we regard the derivation as
a useful addition to the literature since it offers a means to generalize the theory to
different physical situations (such as a sliding mass in a narrow slot, as described
in Appendix B), connects the model with related theories used elsewhere (as in ice
flow dynamics and viscoplastic fluid mechanics), and allows us to assess the physical
conditions under which the model should remain valid (see Appendix A).

Experiments on approximately two-dimensional slumps have also been performed
by Siavoshi & Kudrolli (2005), Lube et al. (2005) and Lajeunesse, Monnier & Homsy
(2005), and further theoretical discussion has been offered by Staron & Hinch (2005)
and Larrieu, Staron & Hinch (2005). Siavoshi & Kudrolli (2005) make a careful study
of magnetically released granular steps over rough surfaces, thereby eliminating any
influence of the detailed initiation of the slump. They focus on relatively shallow initial
steps and present results on the internal dynamics, making a comparison with the
phenomenological ‘BCRE’ model (Bouchaud et al. 1994) which crudely accounts for a
superficial layer of avalanching grains. Our own experiments span a much wider range
of the initial aspect ratio (height of the column divided by initial length along the
channel), and we observe fast sliding granular gravity currents when the initial column
is relatively high. These currents look plausibly as if largely plug-like flows, and so
we have elected to compare the experiments with a shallow-fluid model of a sliding
granular mass. Larrieu et al. (2005) expand further on such a description, although
it is clearly limited for lower initial aspect ratios where superficial flow is certainly
present. A rather different, but complementary, approach is taken by Staron & Hinch
(2005) who evolve slumps via particle mechanics, assuming frictional rigid collisions
between grains.
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Figure 1. Sketches of the two experimental configurations. (a) Slot. (b) Box.

2. Experimental details
2.1. The apparatus

The slumps are performed in two different experimental set-ups (see figures 1 and 2):
(a) A Perspex slot with a swinging gate (the slot is triangular, with a height of 1 m

at the hinge of the gate, some 75 cm long at the base, and has an adjustable width).
The initial pile is put in place initially by funnelling the material into the slot from
above. The metre-depth fall of the grains packs the initial pile relatively tightly, and
in much the same way for each slump.

(b) A Perspex box with a sliding gate (dimensions 18 cm by 30 cm by 45 cm, with the
gate positioned 20 cm along the 45 cm edge). The initial pile was formed by rocking
the box back and forth and the packing is less tight than in the slot.

In each case, the apparatus initiates a dam break in a channel with rectangular
cross-section. The initial granular pile has dimensions (H, L, W ), where H is the
depth, L is the length along the channel and W is its width. All are parameters that
we vary in the experiment. For the slot, the width W could be set so that the slot
was relatively narrow (1 cm) or wide (20 cm); the rectangular box could rotated to
allow two width settings (18 cm and 30 cm). Most of our results relate to the slot with
swinging gate.

2.2. Materials

We used four different granular media (figure 3):
(i) Grit, of irregular shape, but overall mean size of about 1 mm. Density:

2.6 g cm−3. Approximate volume fraction: 0.54 loose, 0.59 packed.
(ii) Glass beads (ballotini) of mean diameter 0.8 mm – fine glass. Density:

2.5 g cm−3. Approximate volume fraction: 0.58 loose, 0.63 packed.
(iii) Glass beads (ballotini) of mean diameter 3 mm – coarse glass. Density:

2.5 g cm−3. Approximate volume fraction: 0.58 loose, 0.65 packed.
(iv) Polystyrene balls of mean diameter 0.75 mm. Density: 0.9 g cm−3. Approximate

volume fraction: 0.66 loose, 0.7 packed.
Most of the experiment, results were obtained using grit and fine glass. For all

of the materials, we attempted to characterize the frictional properties in terms of
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Figure 2. Photographs of collapses of columns of grit. Slumps in the wide slot (W =20 cm):
(a) ‘fractured’ slump with L =6 cm and H = 4 cm. (b) L = 6 cm and H =10 cm. (c) L = 5 and
H =24 cm. (d) Relatively rapid collapse with L = 2 cm and H = 30 cm. Each image is 2/25 s
apart. Note that the line of sight of the camera is slightly inclined so that the brightly lit top
surface of the deposit is also visible (and illustrates how the slump is largely two-dimensional).
(e) Slump in the narrow slot: L = 4 cm, H = 40 cm and W = 1 cm. Each image is 4/25 s apart,
save for the last three, which are separated by 8/25 s (and in which the majority of motion is
in the form of an avalanching superficial flow). The grid shows squares of length 5 cm drawn
on the outside of the slot which assist the measurement of depth (performed directly through
the sidewall). (f ) Slump in the box: two images, before and after, with L =20 cm, H =10 cm
and W = 18 cm. Again, the inclined camera illustrates the two-dimensionality of the deposit.
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Figure 3. Photograph of the four granular materials. From top left and clockwise;
polystyrene balls, coarse glass, grit and fine glass.

δ (deg.) φ (deg.)

Grit 18.5 ± 1.5 36.5 ± 4.5
Fine glass 14.75 ± 0.5 24.5 ± 2
Coarse glass 15 ± 2 26 ± 6
Polystyrene 15 ± 1 25.5 ± 2

Table 1. Results for ‘bed’ angle of friction, δ, and ‘internal’ angle of friction, φ.

two angles: the ‘bed’ angle of friction, δ, indicating how easily material slides over
the smooth plate beneath, and the ‘internal’ angle of friction, φ, which measures
how layers of the medium slide over one another. The results, which comprise a key
ingredient in the theoretical model of § 6 and Appendix A, are summarized in table 1.

The bed angle of friction was estimated (following Hutter & Koch 1991) by
determining when a rigid block of particles held together within a paper cylinder
would begin to slide on an inclined surface made of the same material as the Perspex
slot or box. The internal angle of friction was estimated by gluing particles to a plane
whose inclination was raised until motion downslope began in an overlying granular
layer. This angle was further compared with angles of repose measured from the
final slopes of wedge-shaped piles that either avalanched to rest or were built up by
deposition. There was substantial scatter in the data (notably in φ) which illustrates a
known feature of granular medium, namely that sliding or avalanching begin and end
at slightly different angles (reflecting in some way the difference between dynamic and
static friction). We ignore such subdivisions here and pick the representative values in
table 1 for φ and δ, which seems justified given the qualitative, but not quantitative,
agreement between the theory and experiments outlined in the following sections.

The data reveal one significant feature of the four media: the polystyrene and glass
beads are all fairly spherical and have similar bed and internal angles of friction. The



404 N. J. Balmforth and R. R. Kerswell

grit, on the other hand, is composed of angular rough particles and the corresponding
friction angles are significantly higher.

Finally, we note that the slumps were performed in an air-conditioned laboratory
maintained at 21 ◦C with humidity controlled at 46%. The granular materials were
kept dry in this environment; moistening the materials or the sides of the channel
even a small amount leads to markedly different results.

3. Phenomenology of the collapse
The phenomenology of the slumping process depends strongly on the initial aspect

ratio a (a := H/L; see figure 1) of the column, as found for axisymmetric collapses
by Lajeunesse et al. (2004) and Lube et al. (2004), and in the particle mechanics
computations of Staron & Hinch (2005). There is a gradual transition from relatively
slow fracturing avalanches of shallow columns to violent cascading collapses of tall
columns (see figure 2). The shallowest initial piles develop fracture planes along which
material slides down, and below which grains barely participate in the collapse, if at
all (see the first row of images in figure 2). This flow structure was evident in video
images taken through the sidewalls, and is explored in more detail in the experiments
of Siavoshi & Kudrolli (2005). As the aspect ratio of the initial pile increases, less of
the material resides in place, and eventually the whole pile participates in the collapse
(second and subsequent experiments in figure 2). When a becomes large, the initial
phases of collapse become fast, with the entire column appearing to expand sideways
whilst collapsing downwards ballistically. On impacting the base and re-compacting,
the material forms a denser mass that adjusts more slowly into a final equilibrium
shape near the end of the slot. Simultaneously, a sliding current forms at the nose of
the deposit that determines the run-out.

We use the final slumped profiles of the deposits as the main descriptor of the
collapse. In all the geometries, variations in the direction across the channel were rela-
tively slight (e.g. see figure 1). Thus, the deposit could be characterized by the
thickness or depth h as a function of distance x down the slot. Before describing
the experimental results in detail, we first compare the final profiles of a number of
equivalent collapses to judge the reproducibility of the experiments (figure 4). The
comparisons show profiles in the swinging slot; the profiles from the box were typically
more reproducible (compared to the wide slot), at least for the initial configurations
we used. In certain of the comparisons shown in figure 4, exactly the same material
was tested in sequential experiments. In other cases, different batches of material were
used at different points during the entire experimental sequence.

The final shapes are fairly reproducible, but not perfectly so. Some of the disagree-
ment arises because the experiments did not have exactly the same amount of material
(it is difficult to fill the slot with exactly the same amount of material because the
particles can be packed differently, the gate does not fit exactly back in the same posi-
tion after each release and the Perspex walls can deform outwards slightly). However,
in the wider slot, there was also some effect of differences in the gate release, espe-
cially for the lighter particles (with the polystyrene balls, a vortex in the air trailing
the gate can interact with the particles), and because the slump was not perfectly
two-dimensional. To try to eliminate the peculiarities of particular releases, when
we present data in the following sections, we combine multiple final profiles into
averages whenever available. For the slumps in the wider slot, we also attempted
to minimize any three-dimensional effects by combining measurements from both
walls. Nevertheless, the comparisons in figure 4 illustrate one important aspect of the
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Figure 4. Reproducibility of the final profiles. (a) Grit, L = 4 cm, narrow: four sets of experi-
mental slumps in the narrow slot with H = 50 cm (2 slumps), H = 30 cm (3 slumps), H = 10 cm
(2 slumps) and H = 7.5 cm (3 slumps). (b) Grit: four sets of slumps in the wide slot with
H = 40 cm (4 slumps), H = 30 cm (4 slumps), H =20 cm (4 slumps) and H = 10 cm (4 slumps).
(c) Fine glass: three sets of slumps with H = 30 cm (narrow slot, 3 slumps), H = 15 cm (narrow
slot, 2 slumps) and H = 25 cm (wide slot, 2 slumps).

experiments: errors in measuring the final depths were insignificant in comparison
to the variations in profile between experiments. Consequently, because we did not
perform a large number of experiments for each initial configuration, it is difficult to
assess the overall errors which originate mainly from those variations. A conservative
estimate of the error in depth is up to half a centimetre, whereas the corresponding
error in horizontal length at fixed depth could be up to a couple of centimetres
because of the tapering of the final deposit.

Figure 4(a) also illustrates the measurement of the final maximum height, h∞ (which
is invariably at the wall), and the maximum runout, l∞, both of which we use later as
convenient characterizations of the deposits. While the final maximum height of the
deposit is clearly defined, the final runout is much more ambiguous. This is because
the layer tapers to depths comparable to the particle diameter at its nose and a small
number of particles actually become detached from the main deposit and scattered
further ahead. The maximum range reached by these detached granules was very
variable, whereas the range of the contiguous deposit was much more reproducible.
Given this and the fact that the experiments were motivated by a desire to assess
the continuum-like properties of the granular material, we took the runout to be the
range of the contiguous deposit where the height had decreased below 2 mm. This
was essentially two particle diameters for the materials (grit and fine glass) used to
compile the runout data and hence seemed a reasonable point at which to assume
the granules were no longer moving in contact with each other.
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Figure 5. Time series showing the instantaneous maximum heights and runouts for two
slumps of the grit in the wide slot with L = 2 cm (H = 25 cm and 50 cm). The dotted lines show
the ballistic curve, H − gt2/2.

Although we focus attention on the final profile as the descriptor of the collapse,
figure 5 shows the dynamic evolution of h∞ and l∞ as a function of t for the grit in the
wide slot. Two experiments are shown; the initial ballistic collapse is evident in this
data, as is the more gradual deceleration. A more complete discussion of the evolu-
tionary dynamics for fractured slumps is offered by Siavoshi & Kudrolli (2005).
Collapses in the narrow slot show similar behaviour, although the ballistic fall
appears to be distinctly delayed beyond the initial release of the gate, and the final
adjustment to the ultimate deposit is noticeably different. More specifically, the wider
slumps come to rest only when the sliding current at the nose of the deposit finally
brakes to a halt. On the other hand, when the narrow slumps come to rest at the nose,
material further back up the slot continues to adjust by the continual avalanching of
superficial layers that decrease the surface slope until an equilibrium is reached.

4. Wide collapses
4.1. Taller initial piles

Experiments varying the initial length L and height H such that the overall volume
of the initial column remained fixed are shown in figure 6 for the grit in the wide
slot. The variance in the final shape illustrates how the slumped deposit is influenced
by the initial aspect ratio in this geometry: the higher and narrower initial columns
spread further and fall lower. A comparison of the initial and final areas indicates
that there is also a change in packing: the initial area is systematically smaller than
the final area (by what appears to be as much as 10% on occasions).† This change in
packing is typical of slumps in the slot, and presumably reflects how the initial pile

† Note that the final depths and areas displayed in the figures are slightly overestimated: the
slumps are not perfectly two-dimensional, and the final deposit is invariably slightly depressed in
the middle of the channel compared to the walls, especially for the wide slot. Because measurements
were taken directly through the sidewalls, the actual depths and areas, averaged across the slot, are
therefore a little lower than those recorded.
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Figure 6. Final profiles: grit, varying initial length at fixed volume in a wide slot. The inset
shows the measured final and initial areas.
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Figure 7. Final profiles for the four materials in the wide slot. L = 2 cm and H = 25 cm.

is relatively closely packed by the method of filling, and the material expands on its
way to the final deposit.

We compare final profiles for the four different granular materials in figure 7 for
slumps with the same initial aspect ratio. Remarkably, three of the materials (fine
glass, coarse glass and polystyrene) all slump to similar profiles, except nearer the
nose of the deposit. However, the grit is noticeably different. Slumps in the box show
the same trend even though the deposits are fractured, and final profiles of collapses
of fine glass and polystyrene in the narrow slot are nearly indistinguishable and again
unlike those of grit (slumps of the coarse glass are noticeably different in the narrow
slot, but this is undoubtedly because the diameter of the spheres is not very different
to the slot’s width).
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Figure 9. Similar to figure 8, but showing final profiles for fine glass in the wide slot.

A glance at the physical properties listed in § 2 indicates that, although the densities
and particle diameters are quite different, the fine glass, coarse glass and polystyrene
all have similar angles of friction; the corresponding angles for grit are distinctly
higher. We conclude that friction plays a key role in determining the precise final
shape of the deposit, which disagrees with the claims of Lube et al. (2004), but
agrees with the results of Lajeunesse et al. (2004). The polystyrene balls also interact
electrostatically with the Perspex walls of the slot: a small number of individual grains
remain sticking to the walls of the channel above the main deposit at the end of the
collapse. Nevertheless, the deposit remains fairly two-dimensional, and the slump as
a whole appears to continue regardless of the additional electrostatic interaction with
the walls. However, the polystyrene data were not used to extract scaling behaviour.

Figures 8 and 9 show a compendium of profiles from a series of experiments in
which the initial length L of the pile was fixed, and the initial height H gradually
increased. Although it does not seem possible to scale the profiles in such a way to
collapse them all completely onto a common curve, there is some suggestion that a
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Figure 10. The initial to final height ratio H/h∞ plotted against a for grit (�, L > 2; �,
L = 2) and fine glass (+, all with L = 2 cm) in the wide slot. The dotted lines represent best fits
through the data with gradients of 0.58 (grit) and 0.60 (fine glass).

scaling by the final, maximum height (i.e. h∞) leads to a fairly compact description
of the deposit. The rescaled profiles also indicate that the final deposits tend to
decline from their maximum at the wall with nearly the same slope, and this slope
is invariably the steepest over the whole deposit. The angle of the maximum slope
lies between the internal and bed angles of friction, suggesting it is determined by a
combination of both. Such combinations are, in fact, expected on theoretical grounds
(§ 6). For grit, the maximum angle is about 23◦, and for the fine glass it is about 18◦.

Figure 10 illustrates our efforts to fit the ratio of initial to final heights, H/h∞, by
a simple power law in initial aspect ratio, a:

H

h∞
∼ λaα, (4.1)

where α ≈ 0.6 for a � 2. Although the best-fit power-laws in figure 10 for grit and fine
glass do not coincide, they do seem to have the same exponent α. In other words,
the numerical coefficient λ is a function, λ(δ, φ), of the material properties, but the
exponent α is not. This result again contradicts the conclusions of Lube et al. (2004)
who claim to see no such dependence. However, they used materials with similar
internal angles of friction (and presumably also basal friction angles) whereas we
have considered materials with very different frictional properties. Indeed, had we
added data for coarse glass and polystyrene to the figure, they would have overlain
points for fine glass.

Figure 10 also hints that the sand data depend on more than just the aspect ratio
a: the results for L =2 behave slightly differently to the rest (L > 2). This is more
apparent in a plot of the scaled runout measured from the gate, (l∞ − L)/L, against
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Figure 11. The scaled runout from the gate (l∞ − L)/L plotted against a for grit (�, L > 2;
�, L = 2) and fine glass (+, all with L = 2 cm) in the wide slot. The dotted lines represent best
fits through the data with gradients of 0.88 (grit L =2 and L > 2) and 0.92 (fine glass). The
dashed lines are guide lines with gradients of 0.8 and 1 to indicate that the gradient of the
data is approximately 0.9 ± 0.1.

a (see figure 11). The data is not so clean here and

(l∞ − L)

L
∼ λaα, (4.2)

where α = 0.9 with an error of ±0.1. Again the numerical coefficient is material
dependent, λ= λ(δ, φ), but there is also a noticeable dependence on L, or rather on
the second length scale ratio, b := W/L, in the problem after a := H/L.

4.2. Fractured profiles

Smaller initial columns develop a slip surface along which the medium initially frac-
tures. This leaves a portion of the mass near the wall that does not move in the
slump (these are the leftmost data points in figure 10). In figure 12, we show results
for grit dam breaks in the box with lifting gate; the geometry of the box ensures
fractured deposits in these experiments. The profiles can be scaled to remove much
of the difference between the individual slumps by using the initial height to scale
depths, and the final runout measured from the original position of the gate (xg), to
scale horizontal lengths, i.e. by plotting h/h∞ against (x − xg)/(l∞ − xg). This scaling
is suggested by the theoretical results of § 6, and indicates that the fractured deposits
have a nearly universal shape. Indeed, by performing the same reduction on the data
from experiments in the wide slot (figure 13), we recover practically the same curve.
Because the initial placement in the box is much looser than in the slot, the agreement
further suggests that the initial packing does not play a significant role in determining
the final shape, unlike in the experiments by Daerr & Douady (1999). What differences
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Figure 13. Final profiles of slumps of grit in the wide slot; similar plot to figure 12.

remain between the insets of figures 12 and 13 might be attributable to initial packing
effects, but could also reflect the influence of the channel width (b = W/L),

5. Collapses in the narrow slot
Experiments varying the initial length L and height H , but fixing the volume of

the initial column are shown in figures 14 and 15. The final deposit has a shape that
is roughly independent of the initial aspect ratio, except near the nose of the deposit
where depth systematically decreases as L increases. We interpret this to indicate that
the higher thinner initial columns gained more kinetic energy as they fell, thus running
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Figure 14. Final profiles: fine glass beads, varying initial length at fixed volume in
a narrow slot (1 cm).
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Figure 15. Final profiles: grit, varying initial length at fixed volume in a narrow slot (1 cm).

out further and becoming less packed at their noses. The reduction in packing is also
seen in the comparison of final areas.

A compendium of profiles for fine glass and grit with fixed initial length L and
increasing initial height H is shown in figures 16 and 17. Once these profiles are
scaled by final maximum height, h∞, all the profiles collapse fairly well onto a single
curve, suggesting that there is an underlying universal profile characterizing these
collapses. As also illustrated in the figures, the slopes near the end of the slot now
match closely with the internal angle of friction: the bed angle seems to characterize
little of the final deposit. Given that sidewall friction (which is measured by the basal
friction angle δ since the wall and base are both Perspex) ought now to be a dominant
influence, this is surprising. We return to the issue in § 6 after an evaluation of the
theoretical model.
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Figure 17. Final profiles for fine glass in the narrow slot; similar plotting
scheme to figure 16.

Figure 18 indicates that the initial to final height ratio H/h∞ is well fitted by the
power law,

H

h∞
∼ λa0.5. (5.1)

As in the wide slot (see figure 10), the best fits for grit and fine glass have the same
exponent, but a material-dependent numerical pre-factor. Also as before, the runout
data ((l∞ − L)/L plotted against a in figure 19) is less clean. Adopting a power-law
relationship,

(l∞ − L)

L
∼ λaα, (5.2)

implies α = 0.65 ± 0.05, with a material-dependent numerical coefficient. Given the
success of renormalizing the final profiles with the final height (see figures 16 and 17),
l∞/L was also plotted against a (not shown). The plot looks very similar to figure 19,
but now the best fits have exponents much closer to the scaling exponent for H/h∞.
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Figure 18. The initial to final height ratio H/h∞ plotted against a for grit (�) and fine glass
(+) in the narrow slot. The dotted lines are fits through the data with gradients of 0.5.
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Figure 19. The scaled runout from the gate (l∞ − L)/L plotted against a for grit (�) and
fine glass (+) in the narrow slot. The dotted lines represent best fits through the data with
gradients of 0.67 (sand) and 0.62 (fine glass). The dashed lines are guide lines with gradients
of 0.6 and 0.7 to indicate that the gradient of the data is approximately 0.65 ± 0.05.
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Specifically, we find the best fit power laws,

l∞

L
∼ λa0.55±0.05. (5.3)

Hence, h∞l∞/(HL) has, at best, a very weak dependence on a which is consistent with
figures 16 and 17.

6. Comparison with a simple theory
6.1. A two-dimensional model

We now compare the experimental results with a simple theory idealizing the granular
material as a shallow fluid layer in which frictional sliding along the base provides a
key resistance to flow. Some details of how such a model can be derived asymptotically
from the governing fluid equations with a suitable constitutive law for the internal
and frictional stresses are given in the Appendix. We arrive at a model that is similar
to that proposed by Savage & Hutter (1989).

The model can be conveniently written in terms of the fluid depth, h(x, t), and
horizontal speed, u(x, t), and takes the form,

ht + (hu)x = 0 (6.1)

and

ut + uux = −g sgn(u) tan δ − gKhx, (6.2)

where the fluid density is ρ, g is gravity, and, as above, δ is the bed angle of friction.
Also, K is a constant coefficient whose value depends on the basal and internal angles
of friction and whether the flow is converging or diverging (active or passive; see
Appendix). In the Appendix, we derive the expression

K = Kg =
1 − σ sin φ

1 + σ sin φ
, (6.3)

where σ := sgn(ux) = ux/|ux |, based upon one particular choice of constitutive model
for the granular medium. An alternative form is suggested by the Mohr–Coulomb
model of Savage & Hutter:

K = Ks =
2

cos2 φ

(
1 − σ

√
1 − cos2 φ

cos2 δ

)
− 1. (6.4)

Note that (6.4) can be reduced to (6.3) in the limit δ � 1, which is a key condition
under which the model is derived in Appendix A.

The equations have a special ‘balanced’ equilibrium profile with a constant slope in
which the bed friction exactly counters the gravitational stress: tan δ = −Khx . Should
the inclination of the surface of a granular mass be larger than this slope, the fluid
accelerates; where the slope is less, the fluid speed decelerates. However, after a dam
break, the balanced profile is not the final realized deposit. Instead, the gravitational
driving pushes material sideways, forcing the surface inclination to decline towards the
critical slope, but then inertia carries the material beyond that critical slope to form
shallower deposits. The importance of inertia can therefore be judged by the departure
from the balanced slope. This is likely to be most important at the leading edge of the
deposit, and least important near the back wall of the slot. However, a detailed under-
standing of the final shape requires us to solve the model as an initial-value problem,
starting at the instant of release and ending when the material finally comes to rest.
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Figure 20. Theoretical slump with A = 1. The main panel shows snapshots of the collapsing
thickness field, spaced by 0.2 time units. The points show the final profle.

Provided that u > 0 and ux remains one-signed, a scaling of lengths, speed and time
(h = Hĥ, x = HKx̂ cot δ, u = û

√
gHK and t = t̂

√
HK/g cot δ, plus dropping the hat

decoration after the rescaling) can be used to place (6.1)–(6.2) into the form,

ht + (hu)x = 0 (6.5)

and

ut + uux + hx = −1, (6.6)

with initial and boundary conditions,

h(x, 0) =

{
1 −1/A � x � 0,

0 x > 0,
u(0, t) = 0, (6.7)

where the slot occupies the region −1/A � x, the gate lies at x = 0 and

A :=
aK

tan δ
(6.8)

is the renormalized initial aspect ratio (the only remaining parameter). This system
can be attacked effectively (and semi-analytically) using the method of characteristics;
further details are provided by Kerswell (2005). The initial assumptions on u and ux

are realized in the solutions for all time (sgn(u) = sgn(ux) = +1), and so the calculations
are self-consistent, despite the discontinuous coefficients of the original equations.

Depending on the initial aspect ratio, two possible situations arise, as illustrated in
figures 20 and 21. For both, the release of the pile spawns a characteristic from x = 0
that propagates to the right and marks the leading edge of the fluid. The space–time
curve of this front is given by xf = t(2 − t/2). After a time t =2, the leading edge
comes to a stop at x = 2, at which point the slump as a whole is at rest. The initial
release also spawns a more slowly moving, back-propagating characteristic which
comes to rest before the leading edge. If the backwards characteristic does not reach
the end of the slot (x = −1/A), the deposit forms a fractured type of profile and the
maximum final height remains equal to the initial height (figure 20). However, if the
characteristic reaches the slot’s end, it reflects back from the rear wall at x = −1/A

and the entire layer participates in the slump (figure 21). The reflected characteristic
eventually halts somewhere between the nose and the back wall, where it scars the
final deposit with an abrupt change in surface slope.
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Figure 21. Theoretical slump with A = 5. Snapshots of the collapsing thickness field; in (a),
the snapshots are 0.048 time units apart, and in (b), they are twice that. The points in (b) show
the final profle.
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Figure 22. Final profiles of theoretical computations for various initial aspect ratios in cases
in which the entire initial column slumped. A = 2, 3, 4, 5, 6, 7 and 8. The length and depths are
rescaled to show the results in a similar fashion to the raw experimental data with fixed initial
length L, as figures 8(a) and 9(a). The inset shows the unscaled profiles. In (b), the lengths and
depths are scaled by the final maximum thickness, as in figure 8(b) and 9(b). In both panels,
as aspect ratio decreases, the profiles extend further to the right.

Figure 22 shows a compendium of final profiles for varying initial aspect ratio,
and figure 23 displays the evolution of maximum height and runout. Because of the
scaling reducing (6.1)–(6.2) to (6.5)–(6.6), the initial column in the solutions has unit
height and the position along the slot has its origin at the gate. To present the results
in a similar fashion to the experimental data, we rescale the profiles and shift x in fig-
ure 22(a) (h → Ah and x → 1 + Ax; the inset shows the original solutions). Figure 22(b)
shows how the profiles can then be scaled by the final maximum height, much as we
dealt with the experimental data.

6.2. Comparison with the wide slot

The evolutionary trends displayed in figures 20 and 21 reproduce aspects of the
behaviour seen in the experiments in the wide slot and box (i.e. the fracturing of
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Figure 23. Time series of (a) maximum height and (b) instantaneous runout for the computa-
tions of figure 22. (A =2, 3, 4, 5, 6, 7 and 8, with the largest A slumping furthest.) In (b), all
the data collapse on to the curve x = xf (t) = t(2 − t/2).

lower initial piles or complete slumping of higher initial columns). The final profiles
shown in figure 22 also compare well with the experimental results displayed in
figures 8 and 9. This agreement is remarkable given that the theory is based on a
shallow-layer expansion, yet the initial experimental columns are much taller than
they are wide and far from a shallow limit (more possible errors are mentioned in
Appendix A). In actual fact, there are quantitative disagreements between theory and
experiment that can be seen on a closer examination of the results.

From figure 22(b), we see that the slope at the end of the slot for completely slumped
columns approaches −1 when h and x are scaled by the final maximum height. In
terms of the original variables of (6.1)–(6.2), that limiting value corresponds to an
actual slope of K−1 tan δ. In other words, near the end of the channel, the final profiles
limit to the ‘balanced equilibrium profile’ whose slope is determined by a combination
of both angles of friction. We may easily calculate the balanced angle given the data
in table 1 for our granular media. According to (6.3), derived in the Appendix, the
limiting angle should be 52◦ for the grit and 32◦ for the fine glass (given that σ = +1).
Alternatively, for the Savage–Hutter model, from (6.4), these two angles are predicted
to be 36◦ and 24◦, respectively, and are close to the values expected for K =1 which
has also been advocated in the past (e.g. Pouliquen & Forterre 2002). None of these
estimates compare well with the experimental observations, which lie somewhere
between the bed and internal angles of friction for both materials (and are about 23◦

and 18◦, respectively), although the values expected from the Savage–Hutter model are
certainly closer. However, in view of the crudeness of the theory, it seems unwarranted
to make a definite choice for this special angle, based on a particular theoretical model.

Instead, we opt for an empirical choice for K , or, equivalently, of K−1 tan δ.
Unfortunately, even this choice is ambiguous since there are various ways to make the
selection, and the different choices are not in agreement. The choices ultimately reflect
different dominating errors in the theory. For example, one obvious choice is given
by the limiting final slope at the end of the slot. In this case, the theoretical estimates
may suffer because of a poor representation of the constitutive and sliding behaviour
of the material, or because the shallow-layer approximation fails to represent the
limiting stress distributions of the final deposit sufficiently accurately (indeed, the
‘small’ parameter ε, the aspect ratio, used in the reduction is not particularly small).

A second choice can be based on the aspect ratio that divides initial piles which
completely slump from those that fracture and H = h∞ (that is, the aspect ratio
for which the maximum final height is no longer the initial height). Theoretically,
this happens for a specific choice of A, the rescaled aspect ratio. Experimentally,
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Figure 24. The theoretical prediction for H/h∞ as a function of A (solid line; from Kerswell
2005) in the wide slot plotted with grit data (�, L > 2; �, L =2) and fine glass data (+). To
obtain A from a for the data, the best choice for tan δ/K was made: tan 45◦ for grit and
tan 35◦ for fine glass (these choices shift the data as a whole across the plot so they align at
the bifurcation point where H/h∞ leaves the value 1).

we measure the actual aspect ratio, a, for which this division occurs for each of
the granular materials. By using (6.8), we then find that tan δ/K ≈ tan 45◦ for grit,
whereas tan δ/K ≈ tan 35◦ for fine glass. These compare poorly with the previous
estimates. The theoretical error, in this instance, surely lies in the fact that the initial
phases of the collapse are governed by physics not captured in the shallow-layer
model (such as vertical acceleration) because the initial aspect ratio is not at all small
(in fact it exceeds unity). At best, it is only after an initial transient that the theory
captures the dynamics, and A should then be redefined in some manner to reflect the
aspect ratio when the theory becomes valid (Larrieu et al. 2005, in fact, extend the
shallow-layer model in such directions).

Guided by this, we use the second choice for K to compare the predicted final
heights and runouts with the experimental scaling laws uncovered earlier. In terms of
A, the model predicts the scaling laws,

H

h∞
∼ Aα, (6.9)

where α ≈ 0.69 at A= 5 decreasing down to α ≈ 0.67 at A= 50 (and ultimately 2/3 as
A → ∞), together with

(l∞ − L)

L
= 2 A (6.10)

(see Kerswell 2005 for details). These results are compared with the experimental
data in figures 24 and 25. Agreement for the initial and final height ratio is only
partial because the data show a weaker dependence on a (H/h∞ ∼ a0.6 rather than
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Figure 25. The theoretical prediction, (l∞ −L)/L =2A, (solid line; from Kerswell 2005) in the
wide slot plotted with grit data (�, L > 2; �, L = 2) and fine glass data (+). To be consistent
with figure 24, the same values for tan δ/K (tan 45◦ for grit and tan 35◦ for fine glass) were
used to convert the data over a to that over A.

H/h∞ ∼ a0.67). The runout comparison shown in figure 25 confirms that the model
performs fairly well there too, but again the scaling exponent is not quite captured
(data ∼ a0.9±0.1 rather than ∼ a).

Another useful measure of slumped fractured profiles is suggested by the
characteristics solution. For a fractured deposit, the material falls at the gate to a
depth, hf ≈ 0.4229H , and the slump propagates back a (scaled) distance, lf ≈ 0.7216.
These predictions do not depend on the empirical choice of K and so offer an
independent test of the theory. Experimental measurements of depth at the gate (as
seen in figures 12 and 13) suggest

hf

H
=




0.44 − 0.50 grit, box,
0.45 − 0.49 grit, wide slot,
0.44 − 0.49 polystyrene, fine and coarse glass, box,
0.40 − 0.43 fine glass, wide slot,

which are a little high, but not uncomfortably so. The theoretical ratio of lf to the
forward runout from the gate (2 in scaled units) is 0.3608, which can also be compared
with the data shown in figures 12 and 13. The experimental ratio is clearly much closer
to 0.5. However, as remarked earlier, the runout is probably our worst experimental
measurement. Moreover, our actual measurement of the runout is based on where
the medium has a finite thickness (of 2 mm or so), which clearly underestimates the
runout, and so the experimental values of lf /(l∞ − L) should be larger than expected
theoretically.

Although the comparison of the theoretical and experimental final profiles described
so far is not too discomforting, there are more significant disagreements in the
evolutionary dynamics. First, the evolving profiles of figures 20 and 21 do not
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compare favourably with the more complicated shapes photographed in figure 2.
Secondly, as seen in the time series of figure 23, when the entire pile slumps, the initial
fall of material at the wall is always relatively sharp. By contrast, in the experiments
with higher initial columns, there is a clear ballistic behaviour at the outset (see
figure 5) and the collapse proceeds more smoothly. Much of these discrepancies could
again result from the absence of vertical accelerations in the shallow-fluid model,
although some of the other possible flaws in the theory mentioned in Appendix A
may contribute.

6.3. The narrow slot

When the granular medium slides in a slot, the walls introduce an additional source
of friction. By proceeding as in Appendix B, we generalize the shallow-layer model
(6.1)–(6.2) as follows:

ht + (hu)x = 0, (6.11a)

ut + uux = −g(1 + Λh) sgn(u) tan δ − gKhx, (6.11b)

where Λ is a friction coefficient which, for the particular constitutive law used, takes
the value,

Λ = [W (1 + σ sin φ)]−1 (6.12)

(cf. Hutter & Koch 1991). Evidently, the higher the deposit, the more contact with
the walls of the slot and the greater the friction.

Computations with the model in (6.11b) suggest a similar dynamics to that presented
above without sidewalls. In particular, when the whole initial column slumps, the final
shape at the end of the slot approaches the balanced equilibrium profile, which is
dictated by

Khx = −(1 + Λh) tan δ or h =
1

Λ

[
(1 + Λh0)e

−x(Λ/K) tan δ − 1
]
. (6.13)

At the wall, the balanced slope, −(1 + Λh0) tan δ/K, increases with depth, illustrating
the enhancement of surface slopes by sidewall friction.

At this stage, we observe a striking disagreement between experiment and the
theoretical prediction. In contrast to (6.13), the observed final profiles in the narrow
slot show no significant dependence on height (e.g. see figures 16 and 17). At the heart
of this discrepancy is the fact that the theoretical model is based on the assumptions
that tan δ � 1 and |hx | � 1, but φ remains order one. The balanced profile, on the other
hand, predicts that hx ∼ − Λh tan δ for Λ 	 1. That is, the slope grows exponentially
for large sidewall friction, which ultimately will violate the condition, |hx | � 1. Indeed,
the experiments show a slope of − tanφ near the end of the slot, which is of order
unity and therefore already out of the range of validity of the theory. To model the
slump for O(1) surface slopes, we must return to a more general form of the fluid
equations (see Appendix B). The solution of these ‘slot equations’ is out of the scope
of the present paper, and so we close the theoretical discussion by mentioning a
simple fix for the theory when the surface slopes become too large.

A key feature of the sidewall friction is its dependence on ambient pressure: for a
narrow slot with Coulomb-type slip conditions, the (x, z)-components of friction are
given by

2

W
p tan δ

(u, w)√
u2 + w2

, (6.14)
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where w is the vertical velocity. In the fluid interior, these frictional terms may
become sufficiently large to hold the material in place and prevent basal sliding, even
if the surface slopes are relatively steep. By contrast, since the pressure vanishes on
the surface, the superficial layers experience little sidewall friction. As a result, their
stability is determined by the angle of repose: should the inclination of the free surface
exceed the internal angle of friction, the surface layers fail by avalanching over the
layers beneath to form a shallower deposit. This kind of failure produces a surface-
confined current with a static interior, a flow configuration that cannot be captured
by the plug-like structure of velocity field in the thin-layer model. Furthermore, this
dynamics matches precisely the phenomenology of the narrow-gap experiments, where
secondary surface avalanching was often seen.

Assuming that surface failure occurs whenever |hx | > tan φ, we arrive at a simple
prescription for limiting surface slopes:

hx = −min[K−1(1 + Λh) tan δ, tanφ]. (6.15)

This formula bridges between slopes at the angle of repose for deeper deposits,
and slopes for thinner layers nearer the balanced profile expected for two-
dimensional slumps. The cross-over between the two limits occurs for depths of
order [K tan(φ)/ tan(δ) − 1]/Λ. For our narrow slot, this depth is about a centimetre
for both grit and sand, and so most of the profile would fall along the angle of repose,
as observed. Conservation of mass then leads to

l∞/L ≈
√

2a/ tan φ ≈ H/h∞, (6.16)

which captures the observed final maximum height scaling and marginally
underestimates the observed runout scaling.

7. Discussion
We have performed two-dimensional dam-break experiments for granular materials

in a channel, characterizing the slumps largely by the final deposit. We have also
offered a theoretical model that appears to capture several (but not all) aspects of the
dynamics. As with axisymmetric collapses (Lajeunesse et al. 2004; Lube et al. 2004),
there is some evidence that the final height and runout of the slumped deposit can
be represented by power-law dependences on the initial aspect ratio, a. The data are
particularly clean for the final height and argue for

H

h∞
∼ a0.6 (wide slot),

H

h∞
∼ a0.5 (narrow slot), (7.1)

whereas the runout data show more scatter and suggest that

l∞ − L

L
∼ a0.9±0.1 (wide slot),

l∞ − L

L
∼ a0.65±0.05 (narrow slot). (7.2)

Another characterization of the runout data in the narrow slot,

l∞

L
∼ a0.55±0.05, (7.3)

backs up the finding that the narrow-slot final profile seems to display a universal
shape (h∞l∞/HL is essentially independent of a). Surprisingly, the final height
exponents do not depend on the material used (this finding probably carries over to
the runout scalings, but the data are not good enough to support this conclusion).
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The numerical constants of proportionality, however, show clear material dependence.
This corroborates the conclusion of Lajeunesse et al. (2004) and softens that of Lube
et al. (2004).

By way of comparison, the shallow-layer model used here predicts

H

h∞
∼ a0.67,

l∞ − L

L
∼ a (7.4)

for the wide-slot experiments. The narrow-slot version of the theory produces steep
final deposits which we conclude undergo secondary avalanching until the slope
corresponds to the angle of repose. This predicts that

H

h∞
∼ a0.5,

l∞

L
∼ a0.5, (7.5)

which is in fair agreement with observations.
The distinction between what constitutes a ‘wide’ or a ‘narrow’ slot requires some

discussion. For axisymmetric releases, there are only three, dimensional quantities
which enter the problem (ignoring the internal properties of the granular material
such as the particle diameter†): the height H and radius R of the initial cylinder and
g, the acceleration due to gravity. Once the problem has been non-dimensionalized
by choosing a length and time scale, this leaves just one non-dimensional parameter,
a := H/R the aspect ratio, upon which the solution can depend. As a result, the
final height h∞, for example, can be written as h∞ = H f (a) for some unknown
function, f (a). Lajeunesse et al. (2004) and Lube et al. (2004) suggest that f (a) is a
power law, λaα . The channel problem studied in this paper, however, has an extra
lengthscale, the width W , and hence a second non-dimensional parameter, b := W/L,
upon which the solution can depend. Following the same line of thinking, we can
expect h∞ = H f (a, b) where f is a new unknown function. The original motivation
behind our narrow- and wide-slot experiments was to examine the large and small b

behaviour of f with the idea of seeing if these limits also had a simple power-law
structure. That is, whether

f (a, b) ≈
{
λ1a

α1 ; b → ∞; wide slot,
λ2a

α2 ; b → 0; narrow slot,
(7.6)

which is, indeed, suggested by our results. The scaling of the runouts are less impressive
but, in truth, it is unclear whether the problem lies with the actual data measurements
or in the power-law assumption. What undoubtedly emerges, however, is that slumping
experiments in two-dimensional channels depend on the channel width. Assuming that
the scaling exponents for the final height and runout are simple monotonic functions
of b, we can (minimally) expect the exponent of the power laws for H/h∞ and
(l∞ − L)/L to vary across the ranges [0.5, 0.6] and [0.6, 1], respectively.

It is clear that there is much still to be learnt from this experimental set-up. The
fact that power laws can be used to describe the final deposit has been confirmed
for two-dimensional slumping. However, these laws are influenced by the presence of
sidewalls and depend (albeit only in the numerical coefficent of proportionality) on
the frictional properties of the granular material. The theoretical model also exhibits
scaling-law dependencies, but not quite those observed. Moreover, the model fails to

† Collapses of coarse glass beads, with diameters of about 3 mm, in the narrow slot, of width
1 cm, give an example in which we do not seem able to ignore effects of particle size.
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capture the initial collapse phase and cannot be compared in detail to the observed
flow dynamics.

The work was performed at the Geophysical Fluid Dynamics Summer Study
Program, 2002 and 2004, Woods Hole Oceanographic Institution, which is supported
by N. S. F. and O.N.R. We thank Jack Whitehead for space and equipment in his
Lab, Keith Bradley for building the apparatus, and Karl Helfrich for allowing us to
make a mess on his laser table.

Appendix A. Shallow-fluid theory
Consider a two-dimensional incompressible fluid described by the momentum

equations,

ρ(ut + uux + wuz) = −px + ∂xτxx + ∂zτxz,

ρ(wt + uwx + wwz) = −pz − ρg + ∂xτxz + ∂zτzz,

}
(A 1)

where τ is the deviatoric stress tensor, p the pressure, ρ the density, g the acceleration
due to gravity and (u, w) the velocity components in the (x, z) directions (subscripts
denote partial derivatives, except in the case of the stress components). The surface,
z = h(x, t), is stress free, whilst at the base z = 0, there is no normal flow, w = 0, and
we impose a Coulomb slip condition (e.g. Nedderman 1992),

τxz = −(τzz − p) tan δ sgn(u), (A 2)

provided the fluid is stressed sufficiently to slide. We adopt a Herschel–Bulkley-type
constitutive model borrowed from viscoplastic fluid mechanics (e.g. Oldroyd 1947),

τjk = γ̇ −1(τp + Cγ̇ n)γ̇jk if τ � τy,
(A 3)

γ̇jk = 0 if τ < τy,

where

γ̇jk =
∂uj

∂xk

+
∂uk

∂xj

, τ =
√

1
2

∑
j,k

τjkτkj , γ̇ =
√

1
2

∑
j,k

γ̇jkγ̇kj , (A 4)

n and C are constants, and τy is the yield stress. Notably, we allow the yield stress
to depend on local pressure, τy = τy(p), but otherwise the yield condition is the usual
von Mises criterion†. Thus formulated, the model is a viscous generalization of a
perfectly plastic Druckner–Prager material (e.g. Davis & Salvadurai 2002), and has
common features to the rate-dependent plasticity models considered by Savage and
others (see Savage 1984). A particular, useful choice is τy = τ0 + p sin φ, where τ0 and
φ are constants that are equivalent to the cohesion and internal angle of friction of
the Mohr–Coulomb law (Nedderman 1992).

We remove dimensions as follows:

(x, z) =
(x

ε
, z

)
H, t =

t̂

ε

√
H

g
, (u, w) = (ũ, εw)

√
gH, (p, τjk) = (p̃, τ̃jk)ρgH,

(A 5)

† In soil mechanics, the Mohr–Coulomb law with the Tresca yield condition is normally adopted.
We choose a different formulation here, although in the shallow limit that we consider, both Tresca
and von Mises reduce to the same yield condition. The constitutive model also makes contact with
Jenike’s materials with ‘conical yield functions’ (see Nedderman 1992).
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where the ratio of vertical and horizontal length scales, ε, is assumed small to reach
a simplified shallow-layer theory. On dropping the tilde, the momentum equations
become

ut + uux + wuz = −px + ∂xτxx + ε−1∂zτxz,

ε2(wt + uwx + wwz) = −pz − 1 + ε∂xτxz + ∂zτzz.

}
(A 6)

The dimensionless constitutive equation is:(
τxx τxz

τxz τzz

)
=

1

γ̇

(
B +

γ̇ n

Re

) (
2ux ε−1uz + εwx

ε−1uz + εwx −2ux

)
, (A 7)

for τ � B , or γ̇jk =0 otherwise, with

γ̇ =
√

4u2
x + ε−2(uz + ε2wx)2, Re =

ρgH

C(ε
√

g/H )n
(A 8)

and

B(p) =
τy(p)

ρgH
→ τ0

ρgH
+ p sin φ ≡ B0 + p sin φ. (A 9)

In the problem at hand, the fluid slips over the base at lower stresses than it
yields internally (the base is smooth). However, the scaling leading to (A 6)–(A 9),
if unchecked, implies that the shear stress, τxz, dominates, as is typical in thin-layer
theories. The predominance of sliding can be built into the shallow-fluid model by
requiring the basal friction angle to be small: tan δ ∼ ε. The dimensionless version of
the Coulomb sliding law (A 2) can then be written in the form,

τxz = −(τzz − p)
tan δ

ε
sgn(u). (A 10)

Now we may take the shear stress to scale as O(ε) and set τxz → ετ̂xz. In other words,
the fluid slides so easily that the base provides little traction; the shear stress is
significantly reduced and the longitudinal stresses emerge in the dominant balance of
forces:

ut + uux + wuz = −px + ∂xτxx + ∂zτ̂xz, 0 = −pz − 1 + ∂zτzz, (A 11)

to leading order in ε, on which we impose the surface stress conditions,

p = τzz, and τxz = 2hxτxx on z = h(x, t). (A 12)

A further consequence is that the velocity field must become largely plug-like,
u = u(x, t) + O(ε2), furnishing the constitutive law,

τxx =

(
B +

|2ux |n
Re

)
σ, (A 13)

and yield condition, |ux | > 0, where σ = sgn(ux).
The vertical momentum balance equation integrates to give

p − τ̂zz = h − z, (A 14)

which leads to an implicit relation for the extensional stress from (A 13). Because our
model yield stress has a linear dependence on pressure, this equation may be solved:

τxx =
σ

1 + σ sin φ

[
B0 + (h − z) sin φ +

|2ux |n
Re

]
. (A 15)
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The vertical integral of the horizontal momentum equation over the fluid depth,
together with the boundary conditions, now gives

ut + uux = −hx +
2

h
∂x(hτxx) − tan δ

ε
sgn(u), (A 16)

where

τxx =
1

h

∫ h

0

τxx dz → σ

1 + σ sin φ

[
B0 + 1

2
h sin φ +

|2ux |n
Re

]
. (A 17)

Finally, the integral of continuity and the kinematic surface condition provide the
mass conservation relation, ht +(hu)x =0, and we arrive at a model comprised of two
partial differential equations dictating h(x, t) and u(x, t). For constant yield stress,
B = B0, this reduced model is the inertial sliding generalization of the lubrication
theories of Liu & Mei (1989) and Balmforth & Craster (1999) used to describe
mud and lava flow. Without inertia and any yield stress, the model corresponds to
MacAyeal’s (1987) ice-stream model with a particular sliding law.

On setting B0 = 0 and taking the limit Re → ∞, we emerge with

ut + uux = −
(

1 − σ sin φ

1 + σ sin φ

)
hx − tan δ

ε
sgn(u), (A 18)

which is considered more fully in the main text, where we also return to the original
dimensional variables. Thus stated, the reduced system corresponds to the Savage–
Hutter model, but with a slightly simpler ‘active–passive earth-pressure coefficient’
(the coefficient of hx in the first term on the right-hand side of (A 18); the Savage–
Hutter version is quoted in (6.4) of the main text). In fact, with δ � 1, the Savage–
Hutter coefficient reduces precisely to that contained in (A 18), reflecting a common
limit in the yield conditions of the two theories. We could argue that the Savage–
Hutter coefficient, being derived using Mohr stress circles for non-shallow layers, is
potentially more accurate than that in (A 18) (and corresponds precisely to, somewhat
arbitrarily, replacing the coefficient of hx in (A 18) by that expected for the equilibrium
of a wedge-shaped pile). Though appealing, the actual accuracy of this ‘improvement’
is not clear.

In summary, although we began with a different constitutive model for the granular
fluid than those normally considered, we have reduced the governing equations to
a Savage–Hutter-type model. Moreover, we performed the reduction asymptotically,
which highlights that the theory should be accurate, provided ε � 1 and the bed
be relatively slippery, δ � φ. Unfortunately, neither condition is well satisfied in
the experiments, and so cannot expect the theory to be particularly accurate, even
if the constitutive behaviour were well represented by (A 4)–(A 4). When ε is not
small, the model is likely to represent the stresses, and therefore the final shape of the
deposit, inaccurately. If δ is not much smaller than φ, there is no reason to expect
a sliding plug-flow, and internal failure could even occur, allowing avalanching of
superficial layers, as observed.

Appendix B. Sliding in a narrow slot
When the granular fluid slides within a narrow slot (with cross-slot coordinate, y),

we incorporate the additional friction from the sidewalls, located at y = ±W/2, using
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the same Coulomb law. The momentum equations take the dimensionless form,

ut + uux + vuy + wuz = −px + ∂xτxx + ∂yτ̂yz + ∂zτxz,

�2(vt + uvx + vvy + wvz) = −py + �∂xτxy + ∂yτyy + �∂zτyz,

wt + uwx + vwy + wwz = −pz − 1 + ∂xτxz + ∂yτ̂zy + ∂zτzz,


 (B 1)

which can be found on scaling (x, z) and (u, w) by the vertical lengthscale H and
velocity scale U =

√
gH , y by the slot width, W , and the cross-slot velocity, v, by �U ,

where � := W/H . Pressure and deviatoric stress components have the scale ρgH ,
except for τxz and τyz, which receive an additional factor of � (warranting their
acquisition of a hat). The Coulomb slip conditions on the sidewalls are

(τ̂xy, τ̂yz) = ±(p − τyy)�
−1 tan δ

(u, w)√
u2 + w2

at y = ± 1
2
, (B 2)

which force us to assume that tan δ is now of order �. So far, the procedure is much
as before, and the main result is that p − τyy is independent of y in the limit � → 0.

In fact, the constitutive law is more demanding: Because γ̇xy = �vx + �−1uy and
γ̇xy = �vz + �−1wy , in terms of the unit U/H , the shear stresses across the slot (τxy

and τzy) can only be made of order � smaller than the remaining stress components
(as demanded by the scaling above) if the flow down the slot is plug-like:

u = u(x, z, t) + O(�2), w = w(x, z, t) + O(�2).

Furthermore, the continuity equation, coupled with the impermeable condition of the
sidewalls, then implies that ux + wz = O(�2) and v = O(�2), which leads us to take
τyy =O(�) and γ̇ =

√
4u2

x + (uz + wx)2 + O(�). A straightforward averaging across
the slot now leads to the dynamical equations for our granular ‘slot flow’:

ut + uux + wuz = −px + ∂xτxx + ∂zτxz − Υpu√
u2 + w2

,

wt + uwx + wwz = −pz − 1 + ∂xτxz + ∂zτzz − Υpw√
u2 + w2

,


 (B 3)

where Υ := 2 tan δ/�, and(
τxx τxz

τxz τzz

)
=

1

γ̇

(
B +

γ̇ n

Re

)(
2ux uz + wx

uz + wx 2wz

)
, (B 4)

for τ � B , and γ̇xx = γ̇xx = 0 otherwise, with

γ̇ =
√

4u2
x + (uz + wx)2, Re =

ρgH

C(U/H )n
, B(p) =

τy(p)

ρgH
. (B 5)

Though we do not explore these equations here, we do mention that the opportunity
for the surface of a wedge-shaped deposit to fail by sliding in the direction parallel to
the surface can be extracted from them, provided the slope exceeds the internal angle
of friction (as introduced to limit surface slopes in § 6.3).

When the flow in the slot is relatively shallow, we may approximate the slot
equations still further. We introduce the further scalings x = x̃/ε, t = t̃/ε, w = εw̃,
τxz = ετ̂xz, and Υ = εΥ̃ , then fix u = u(x, t)+O(ε2). To leading order in ε (and dropping
the tilde decoration), we then recover (A 11), but with an extra term, −Υp sgn(u), in
the horizontal momentum equation. After an integral over depth, we derive (A 16),
but supplemented with the sidewall friction term, −(Υ/2)(h − 2τxx) sgn(u). As before,
setting B0 = 0 and taking the limit Re → ∞, leads to (6.11b).
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